Конюхова Е. А. Электроснабжение объектов

a:2:{s:4:"TEXT";s:108704:"

ОСНОВНЫЕ СВЕДЕНИЯ О СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ ОБЪЕКТОВ

Скачать Конюхова Е. А. Электроснабжение объектов>>>

В настоящее время нельзя представить себе жизнь и деятельность современного человека без применения электричества. Электричество уже давно и прочно вошло во все отрасли народного хозяйства и в быт людей. Основное достоинство электрической энергии относительная простота производства, передачи, дробления и преобразования.

В системе электроснабжения объектов можно выделить три вида электроустановок: по производству электроэнергии электрические станции;

по передаче, преобразованию и распределению электроэнергии электрические сети и подстанции;

по потреблению электроэнергии в производственных и бытовых нуждах приемники электроэнергии.

Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин, называемых генераторами, преобразуются в электрическую энергию.

В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на следующие основные группы: тепловые, гидравлические, атомные, ветряные и др.

Приемником электроэнергии (электроприемником, токоприемником) называется электрическая часть производственной установки, получающая электроэнергию от источника и преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию электростатического и электромагнитного поля.

По технологическому назначению приемники электроэнергии классифицируются в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию: электродвигатели приводов машин и механизмов; электротермические установки; электрохимические установки; установки электроосвещения; установки электростатического и электромагнитного поля, электрофильтры; устройства искровой обработки, устройства контроля и испытания изделий (рентгеновские аппараты, установки ультразвука и т.д.). Электроприемники характеризуются номинальными параметрами: напряжением, током, мощностью и др.

Совокупность электроприемников производственных установок цеха, корпуса, предприятия, присоединенных с помощью электрических сетей к общему пункту электропитания, называется электропотребителем .

Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей и приемников, объединенных общим и непрерывным процессом выработки, преобразования, распределения тепловой и электрической энергии, называется энергетической системой.

Единая энергетическая система (ЕЭС) объединяет энергетические системы отдельных районов, соединяя их линиями электропередачи (ЛЭП).

Часть энергетической системы, состоящая из генераторов, распределительных устройств, повышающих и понижающих подстанций, линий электрической сети и приемников электроэнергии, называют электроэнергетической системой.

Электрической сетью называется совокупность электроустановок для передачи и распределения электроэнергии, состоящая из подстанций и распределительных устройств, соединенных линиями электропередачи, и работающая на определенной территории.

Электрическая сеть объекта электроснабжения, называемая системой электроснабжения объекта, является продолжением электрической системы. Система электроснабжения объекта объединяет понижающие и преобразовательные подстанции, распределительные пункты, электроприемники и ЛЭП.

Прием, преобразование и распределение электроэнергии происходят на подстанции электроустановке, состоящей из трансформаторов или иных преобразователей электроэнергии, распределительных устройств, устройств управления, защиты, измерения и вспомогательных устройств.

Распределение поступающей электроэнергии без ее преобразования или трансформации выполняется на распределительных подстанциях (РП).

Электрические сети подразделяют по следующим признакам.

  1. Напряжение сети. Сети могут быть напряжением до 1 кВ низковольтными, или низкого напряжения (НН), и выше 1 кВ высоковольтными, или высокого напряжения  (ВН).
  2. Род тока. Сети могут быть постоянного и переменного тока. Электрические сети выполняются в основном по системе трехфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии. При большом числе однофазных приемников от трехфазных сетей осуществляются однофазные ответвления. Принятая частота переменного тока в ЕЭС России равна 50 Гц.
  3. Назначение. По характеру потребителей и от назначения территории, на которой они находятся, различают: сети в городах, сети промышленных предприятий, сети электрического транспорта, сети в сельской местности. Кроме того, имеются районные сети, предназначенные для соединения крупных электрических станций и подстанций на напряжении выше 35 кВ; сети межсистемных связей, предназначенные для соединения крупных электроэнергетических систем на напряжении 330,500 и 750 кВ. Кроме того, применяют понятия: питающие и распределительные сети.

 

 

Рис. 1.1. Условные обозначения элементов электрической  системы

 

 

Рис. 1.2. Схема электрической  системы

 

 

  1. Конструктивное выполнение сетей. Линии могут быть воздушными, кабельными и токопроводами. Подстанции могут быть открытыми и закрытыми.

Для графического изображения электроэнергетических систем, а также отдельных элементов и связи между элементами используют общепринятые условные обозначения. На рис.

1.1 показаны условные обозначения основных элементов электроэнергетической системы.

Примерная схема относительно простой электроэнергетической системы приведена на рис. 1.2. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных типов: тепловой электростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ), подводится к потребителям, удаленным друг от друга. Для того чтобы передать электроэнергию на расстояние, ее предварительно преобразовывают, повышая напряжение трансформаторами. У мест потребления электроэнергии напряжение понижают до нужной величины. Из схемы можно понять, что электроэнергия передается по воздушным линиям. Схема, приведенная на рис. 1.2, представлена в однолинейном изображении. В действительности элементы системы, работающие на переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно воспользоваться ее однолинейным изображением.

 

1.2.  Электрические параметры электроэнергетических систем

 

При анализе работы сети различают параметры элементов сети и параметры ее режимов. Параметрами элементов электрической сети являются сопротивления и проводимости, коэффициенты трансформации. К параметрам сети также относят электродвижущую силу (э.д.с.) источников и задающие токи (мощности) нагрузок. К параметрам режима относятся: значения частоты, токов в ветвях, напряжений в узлах, фазовых углов, полной, активной и реактивной мощностей электропередачи, а также значения, характеризующие несимметрию трехфазной системы напряжений или токов и несинусоидальность изменения напряжения и токов в течение периода основной частоты.

Под режимом сети понимается ее электрическое состояние.

 

Рассмотрим возможные режимы работы электрических систем.

При работе в нормальном установившемся режиме значения основных параметров (частоты и напряжения) равны номинальным или находятся в пределах допустимых отклонений от них, значения токов не превышают допустимых по условиям нагревания величин. Нагрузки изменяются медленно, что обеспечивает возможность плавного регулирования работы электростанций и сетей и удержание основных параметров в пределах допустимых норм. Отметим, что нормальным считается режим и при включении и отключении мощных линий или трансформаторов, а также для резкопеременных (ударных) нагрузок. В этих случаях после завершения переходного процесса, который продолжается доли секунды, вновь наступает установившийся нормальный режим, когда значения параметров в контрольных точках системы оказываются в допустимых пределах.

В переходном неустановившемся режиме система переходит из установившегося нормального состояния в другое установившееся с резко изменившимися параметрами. Этот режим считается аварийным и наступает при внезапных изменениях в схеме и резких изменениях генераторных и потребляемых мощностей. В частности, это имеет место при авариях на станциях или сетях, например при коротких замыканиях и последующем отключении поврежденных элементов сети, резком падении давления пара или напоров воды и т.д. Во время аварийного переходного режима параметры режима системы в некоторых ее контрольных точках могут резко отклоняться от нормированных значений.

Послеаварийный установившийся режим наступает после локализации аварии в системе. Этот режим чаще всего отличается от нормального, так как в результате аварии один или несколько элементов системы (генератор, трансформатор, линия) будут выведены из работы. При послеаварийных режимах может возникнуть так называемый дефицит мощности, когда мощность генераторов в оставшейся в работе части системы меньше мощности потребителей. Параметры послеаварийного (форсированного) режима могут в той или иной степени отличаться от допустимых значений. Если значения этих параметров во всех контрольных точках системы являются допустимыми, то исход аварии считается благополучным. В противном случае исход аварии неблагополучен и диспетчерская служба системы принимает немедленные меры к тому, чтобы привести параметры послеаварийного режима в соответствие с допустимыми.

 

1.3.  Напряжения электрических сетей

 

Электрическое оборудование, применяемое в электрических системах, характеризуется номинальным напряжением. При номинальном напряжении электроустановки работают в нормальном и экономичном режимах.

Номинальное напряжение сети совпадает с номинальным напряжением ее приемников. Первичные обмотки трансформаторов (независимо от того, повышающие они или  пони

жающие) играют роль потребителей электроэнергии, поэтому их номинальное напряжение принимают равным номинальному напряжению электроприемников.

Генераторы электрических станций и вторичные обмотки трансформаторов находятся в начале питаемой ими сети, поэтому их напряжения должны быть выше номинального напряжения приемников на величину потерь напряжения в сети. Обычно принимают номинальное напряжение вторичных обмоток трансформатора на 5 или 10% выше номинального для электроприемников и сети.

ЛЭП, предназначенные для распределения электроэнергии между отдельными потребителями в некотором районе и для связи энергосистем, могут выполняться как на большие, так и на малые расстояния и предназначаться для передачи мощностей различных величин. Для дальних передач большое значение имеет пропускная способность, т. е. та наибольшая мощность, которую можно передавать по ЛЭП с учетом всех ограничивающих факторов.

Для воздушных ЛЭП переменного тока можно приближенно считать, что та максимальная мощность, которую они могут передать, примерно пропорциональна квадрату

 

Таблица 1 . 1

 

Номинальные напряжения электрических систем

 

Номинальные напряжения приемников и сети, кВ

Номинальные междуфазные напряжения на зажимах, кВ

генераторов

трансформаторов

Первичные обмотки

Вторичные обмотки

0,22

0,23

0,22

0,23

0,38

0,4

0,38

0,4

0,66

0,69

0,66

0,69

(3)

(3,15)

(3)

(3,15)

6

6,3

6 и 6,3*

6,3 и 6,6

10

10,5

10 и 10,5*

10,5 и 11

20

21

20 и 21*

22

35

35

38,5

110

110

115 и 121

(150)

(150)

(158)

220

220

230 и 240

330

330

347

500

500

750

750

1150

1150

 

 

Примечания: 1. Напряжения, указанные в скобках, для вновь проектируемых сетей не  рекомендуются.

  1. Знаком * отмечены напряжения трансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электрических станций или к выводам генераторов.

 

напряжения и обратно пропорциональна длине передачи. Стоимость сооружения можно принять пропорциональной величине напряжения. Поэтому в развитии передач электроэнергии на расстояние наблюдается тенденция к увеличению напряжения как к главному средству увеличения пропускной способности. Со времени создания первых ЛЭП напряжение повышалось в 1,5 ... 2 раза примерно каждые 15 ... 20 лет. Рост напряжения давал возможность увеличивать протяженности ЛЭП и передаваемые мощности.

В табл. 1.1 приведены номинальные междуфазные (линейные) напряжения для трехфазных приемников электрической энергии, генераторов и трансформаторов.

 

1.4.  Управление электроэнергетическими системами

 

Особенностью работы электроэнергетических систем является то, что электростанции должны вырабатывать столько мощности, сколько ее требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций и сетей должно быть готово ко всякому периодическому изменению нагрузки потребителей в течение суток или года. Для того чтобы наиболее экономично эксплуатировать электрическую станцию, персоналу диспетчерских служб энергосистемы необходимо заранее знать, как изменяется спрос на электрическую энергию. Зная эти изменения, персонал может подгото

 

вить остановку необходимого числа генераторов при снижении нагрузки и, наоборот, подготовить к пуску резервные генераторы при увеличении потребления энергии.

Следует также учитывать, что от энергосистем питается ряд потребителей, нарушение электроснабжения которых недопустимо, так как это может привести к авариям и человеческим жертвам, вызвать простои и недовыпуск продукции предприятиями и т.д. Поэтому к работе энергосистем предъявляются следующие основные требования:

выполнение плана выработки и распределения электроэнергии с покрытием максимумов нагрузки;

бесперебойная работа электрооборудования и надежная работа систем электроснабже

ния;

обеспечение необходимого качества отпускаемой потребителям электроэнергии по на

пряжению и частоте.

Для обеспечения указанных требований энергосистемы оборудуются специальными диспетчерскими пунктами, которые оснащаются средствами контроля, управления, связью, четкой мнемонической схемой расположения электростанций, ЛЭП и понижающих подстанций.

 

Отличительной особенностью диспетчерской службы является полная ответственность диспетчера за работу электростанций, электросетей и электроснабжение потребителей. Распоряжение диспетчера является законом и должно безоговорочно выполняться всеми звеньями энергосистемы.

Основной целью управления энергосистемой является оптимизация ее построения, работы и эксплуатации. Для этого необходимо знать:

свойства и характеристики системы;

данные о состоянии технологического процесса на электростанциях (о расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.);

сведения об электрических параметрах режима (частоте, напряжениях, токах, активных и реактивных мощностях и т.д.);

положение схемы системы какие элементы в данный момент находятся в работе, а какие отключены.

Вся эта обширная информация о работе энергосистемы должна перерабатываться и использоваться для оптимизации режима работы.

В системе управления электроэнергетикой большое значение имеют электронные цифровые вычислительные машины.

При аварии дежурный инженер должен найти пути и средства восстановления нормального режима, произвести требуемые переключения в схеме электрических соединений. При аварийных режимах в энергосистеме часто требуется выдать управляющий сигнал не более чем через 0,05 с. Человека здесь выручают автоматические устройства, обладающие при переработке информации большим, чем он, быстродействием.

 

1.5.  Структура потребителей и понятие о графиках их электрических нагрузок

 

В зависимости от выполняемых функций, возможностей обеспечения схемы питания от энергосистемы, величины и режимов потребления электроэнергии и мощности, особенностей правил пользования электроэнергией потребителей электроэнергии принято делить на следующие основные группы:

промышленные и приравненные к ним; производственные сельскохозяйственные; бытовые;

общественнокоммунальные (учреждения, организации, предприятия торговли и общественного питания и др.).

 

К промышленным потребителям приравнены следующие предприятия: строительные, транспорта, шахты, рудники, карьеры, нефтяные, газовые и другие промыслы, связи, коммунального хозяйства и бытового обслуживания.

Промышленные потребители являются наиболее энергоемкой группой потребителей электрической энергии.

Каждая из групп потребителей имеет определенный режим работы. Так, например, электрическая нагрузка от коммунальнобытовых потребителей с преимущественно осветительной нагрузкой отличается большой неравномерностью в различное время суток. Днем нагрузка небольшая, к вечеру она возрастает до максимума, ночью она резко падает и к утру вновь возрастает. Электрическая нагрузка промышленных предприятий более равномерна в течение дня и зависит от вида производства, режима рабочего дня и числа смен.

 

Рис. 1.3. Суточные графики осветительной нагрузки города: а зимой; б –  летом

 

Наглядное представление о характере изменения электрических нагрузок во времени дают графики нагрузок. По продолжительности они могут быть суточными и годовыми. Если откладывать по оси абсцисс часы суток, а по оси ординат потребляемую в каждый момент времени мощность в процентах от максимальной мощности, то получим

 

Рис. 1.4. Суточные графики электрической нагрузки крупного города: а — зимой; б —  летом

 

суточный график нагрузки. На рис. 1.3 изображены суточные графики осветительной нагрузки города для зимнего (октябрь март) и летнего (апрель сентябрь) периодов. Максимальная нагрузка для зимних суток наступает между 17 и 20 ч (кривая а), а для летних суток между 22 и 23 ч (кривая б). Таким образом, летний максимум (мощность в часы пик) наступает позднее и значительно меньше по величине, чем зимой. Дневной минимум также уменьшается.

На рис. 1.4 изображены характерные суточные графики активной мощности (в процентах от максимальной мощности) крупного города с учетом нагрузок освещения, а также силового оборудования коммунальных предприятий, электрифицированного транспорта и др.

 

 

1.6.  Преимущества объединения электроэнергетических систем

 

На первой стадии развития электроэнергетика представляла собой совокупность отдельных электростанций, не связанных между собой. Каждая из электростанций через собственную сеть передавала электроэнергию потребителям. В дальнейшем стали создаваться электрические системы, в которых электрические станции соединялись электрическими сетями и включались на параллельную работу. Отдельные территориальные энергосистемы в свою очередь также объединялись, образуя более крупные энергосистемы. Тенденция к образованию по возможности более крупных энергетических объединений проявляется практически во всех странах.

Общее стремление к объединению энергетических систем вызвано огромными преимуществами по сравнению с отдельными станциями.

При создании объединенных энергетических систем можно уменьшить суммарную установленную мощность электростанций.

Большая совокупность потребителей электрической энергии характеризуется графиком нагрузки (см. рис. 1.4). Максимум суммарной нагрузки системы меньше, чем сумма максимумов нагрузок отдельных потребителей. Это объясняется несовпадением отдельных максимумов изза различных условий работы потребителей. В энергетических системах, охватывающих обширные географические районы, несовпадение максимумов вызвано расположением потребителей в разных часовых поясах. Например, объединение потребителей, размещенных в европейской и сибирской частях страны, позволит получить более равномерный суммарный график по сравнению с графиком нагрузки отдельных потребителей (рис. 1.5). Установленная мощность электростанций в системе должна быть достаточной для покрытия максимальных нагрузок потребителей. Кроме того, исходя из требований, предъявляемых к надежности работы систем, должна предусматриваться резервная мощность генераторов. При параллельной работе электрических станций резервная мощность может быть уменьшена. Покажем это на простом примере. Пусть две электростанции, каждая из которых имеет по четыре генератора, работают изолированно. Тогда одна станция может вырабатывать электрическую энергию, используя 75% установленной мощности, так как один генератор должен находиться в резерве. При соединении двух станций общей сетью в резерве находится один генератор из восьми, т.е. может быть использовано 7/8 (87,5%) установленной мощности.

При объединении разных типов электростанций можно более полно использовать гидроэнергетические ресурсы.

Расход воды в реке колеблется в больших пределах. Для надежного снабжения электроэнергией потребителей мощность гидроэлектростанции (ГЭС) при изолированной ее работе нужно выбирать исходя из обеспеченного расхода воды. В случае больших расходов часть воды пришлось бы сбрасывать мимо турбин.

 

 

Рис. 1.5. Эффект совмещения графиков нагрузок потребителей, расположенных в разных часовых  поясах:

1,2 графики нагрузок отдельных подсистем; 3 — график объединенной   системы

 

Рассмотрим преимущества объединения ТЭС и ГЭС на примере. Пусть мощности каждой станции равны 100 МВт. Каждая станция вырабатывает энергию для своего района, причем станции работают изолированно. Мощности нагрузок в каждом районе равны по 100 МВт. Потребности электроэнергии за сутки в каждом районе по 1600 МВт·ч. Далее предположим, что по расходу воды ГЭС за сутки может выработать только 1200 МВтч. Следовательно, дефицит электроэнергии в районе с ГЭС составит 400 МВт·ч. ТЭС за сутки может выработать 2400 МВт·ч, т.е. в районе с ТЭС могут быть дополнительно использованы 800 МВт·ч. При объединении на параллельную работу ТЭС и ГЭС можно, заставив ТЭС выработать 2400 МВт·ч электроэнергии, полностью удовлетворить спрос всех потребителей двух районов.

Объединение нескольких электростанций разных видов позволяет повысить экономичность выработки электроэнергии.

Энергетические системы дают возможность согласованно работать тепловым и гидроэлектростанциям. В самом деле, в период недостатка воды на ГЭС (зимой) выработка электроэнергии на них снижается, и потребители обеспечиваются электроэнергией в большей мере от ТЭС. Наоборот, летом при большом притоке воды ГЭС работают на полную мощность, а выработка электроэнергии ТЭС снижается. Это обеспечивает экономию топлива и, следовательно, уменьшает себестоимость электроэнергии. Примерное распределение электрических нагрузок между станциями различных видов показано на суточном графике нагрузок в целом энергосистемы и доли в его покрытии различных видов электрических станций (рис. 1.6).

Из суточного графика энергосистемы видно, что в основном нагрузки покрывают тепловые конденсационные электростанции государственные районные электростанции (ГРЭС).

Доля ТЭЦ в покрытии нагрузок энергосистемы определяется их тепловыми графиками. Нагрузка ГЭС определяется стоком реки. Электростанции, подключаемые к системе в часы наибольших (пиковых) нагрузок, называют пиковыми. В большинстве случаев пиковыми станциями являются гидростанции (ГЭС и ГАЭС гидроаккумулирующие электростанции), не обеспеченные водой для длительной работы не в полную мощность в некоторые периоды, и станции, оборудованные газовыми турбинами.

Объединение энергосистем позволяет увеличить единичные мощности агрегатов.

С возрастанием мощностей агрегатов улучшаются их технические характеристики, и снижается удельная стоимость выработки электроэнергии.

 

 

 

 

 

Рис. 1.6. Примерные суточные графики нагрузок энергосистемы и электрических  станций

 

Создание объединенных энергосистем позволяет повысить надежность электроснабжения потребителей.

Отдельные элементы системы (генераторы, трансформаторы, ЛЭП и др.) в результате аварий могут выходить из строя. В этих случаях часть потребителей может потерять питание. В схеме, показанной на рис. 1.7, при возникновении трехфазного короткого замыкания на  ЛЭП

 

полностью прекращается подача электроэнергии потребителям. Применение устройств релейной защиты и автоматики является эффективным средством повышения надежности. Релейной защитой называется система устройств, которые производят отключение поврежденных элементов или частей системы и локализуют аварию. К автоматическим устройствам относятся устройства автоматического повторного включения (АПВ) и автоматического ввода (включения) резерва (АВР). Устройства АПВ (рис. 1.8) предназначены для ликвидации «переходящих» повреждений, например коротких замыканий. При появлении дугового короткого замыкания на воздушной линии (например, при попадании молнии) она отключается под действием релейной защиты, дуга гаснет и восстанавливаются диэлектрические свойства воздушного промежутка.

Затем под действием АПВ автоматически включается напряжение на линии электропередачи, которая может продолжить успешную работу.

 

 

Рис. 1.7. Схема прекращения подачи электроэнергии потребителям при трехфазном коротком замыкании

 

 

Рис. 1.8. Схема повышения надежности электроснабжения с помощью  АПВ

 

 

Рис. 1.9. Схема повышения надежности электроснабжения с помощью  АВР

 

Принцип работы АВР поясняет рис. 1.9. При повреждении одного из трансформаторов автоматически под действием релейной защиты происходит его отключение, а оставшиеся без напряжения потребители после срабатывания АВР подключаются к исправному трансформатору.

 

1.7.  Организация взаимоотношений между энергосистемой и потребителями

 

Взаимоотношения между энергосистемой и потребителями регламентированы Правилами пользования электрической энергией. Их в определенной мере можно разделить на юридическиправовые, техникоэкономические и оперативнодиспетчерские.

К юридическиправовым вопросам относятся следующие:

регламентация порядка присоединения электроустановок потребителей к энергосистеме. Различные по составу и присоединяемой мощности потребители ставят перед энергосистемой задачи разной сложности присоединения;

разграничения балансовой принадлежности оборудования и сетей и эксплуатационной ответственности между потребителем и энергосистемой;

выбор соответствующих тарифов и системы расчета за электроэнергию;

 

определение условий электроснабжения потребителей в период возникновения в энергосистеме временных дефицитов мощности или энергии в целях сохранения устойчивости режима системы и ее разгрузки за счет отключения части потребителей;

определение порядка допуска персонала энергосистемы в электроустановки потребителей для оперативных переключений и для контроля над режимом электропотребления;

регламентация ответственности энергосистемы и потребителей за электроснабжение, качество электроэнергии и соблюдение правил пользования электроэнергией.

Техникоэкономические вопросы взаимоотношений между энергосистемой и потребителем связаны с разработкой и выполнением:

технических условий на присоединение электроустановок потребителей к энергосисте

 

ме;

 

схем размещения приборов контроля качества электроэнергии; схем размещения приборов учета;

нормативов по компенсации реактивной мощности и оптимальных режимов работы ком

 

пенсирующих устройств;

правил и норм по надежной и экономичной эксплуатации электроустановок потребите

 

лей. ния:

 

Оперативнодиспетчерские взаимоотношения определяются необходимостью обеспечеэлектроснабжения потребителей в соответствии с выбранным уровнем надежности схе

 

мы их внешнего электроснабжения;

нормальных условий эксплуатации и ремонта оборудования, сетей и приборов энергосистемы и потребителей;

установленных стандартом норм качества электроэнергии;

разгрузки энергосистемы для сохранения устойчивости ее режима при возникновении временных аварийных дефицитов мощности.

Единство электрической схемы энергосистемы и потребителей обуславливает необходимость строгой регламентации взаимоотношений между оперативнодиспетчерским персоналом.

Координация взаимоотношений между энергосистемой и потребителем возложена на Энергосбыт.

 

Глава 2

 

РЕЖИМЫ РАБОТЫ НЕЙТРАЛИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ

 

2.1.  Режим работы нейтрали в установках напряжением выше 1 кВ

 

Электротехнические установки напряжением выше 1 кВ согласно Правилам устройства электроустановок (ПУЭ) разделяются на установки с большими токами замыкания на землю (сила тока однофазного замыкания на землю превышает 500 А) и установки с малыми токами замыкания на землю (сила тока однофазного замыкания на землю меньше или равна 500 А).

В установках с большими токами замыкания на землю нейтрали присоединены к заземляющим устройствам непосредственно или через малые сопротивления. Такие установки называются установками с глухозаземленной нейтралью.

В установках, имеющих малые токи замыкания на землю, нейтрали присоединены к заземляющим устройствам через элементы с большими сопротивлениями. Такие установки называются установками с изолированной нейтралью.

В установках с глухозаземленной нейтралью всякое замыкание на землю является коротким замыканием и сопровождается большим током.

В установках с изолированной нейтралью замыкание одной из фаз на землю не является коротким замыканием (КЗ). Прохождение тока через место замыкания обусловлено проводимостями (в основном, емкостными) фаз относительно земли.

 

Выбор режима нейтрали в установках напряжением выше 1 кВ производится при учете следующих факторов: экономических, возможности перехода однофазного замыкания в междуфазное, влияние на отключающую способность выключателей, возможности повреждения оборудования током замыкания на землю, релейной защиты и др.

В электрических сетях РАО ЕЭС России приняты следующие режимы работы нейтрали: электрические сети с номинальными напряжениями 6...35 кВ работают с малыми токами

замыкания на землю;

при небольших емкостных токах замыкания на землю с изолированными нейтралями; при определенных превышениях значений емкостных токов с нейтралью, заземленной

через дугогасящий реактор.

Если в одной из фаз трехфазной системы, работающей с изолированной нейтралью, произошло замыкание на землю, то напряжение ее по отношению к земле станет равным нулю, а напряжение остальных фаз по отношению к земле станет равным линейному, т. е. увеличится в

3

раз. Ток замыкания на землю будет небольшим, поскольку вследствие изоляции нейтрали отсутствует замкнутый контур для его прохождения. Ток замыкания на землю в системе с изолированной нейтралью будет небольшим и не вызовет аварийного отключения линии. Таким образом, изоляция нейтрали источника питания обеспечивает надежность электроснабжения, так как не отражается на работе потребителей.

Однако в сетях с большими емкостными токами на землю (особенно в кабельных сетях) в месте замыкания возникает перемежающаяся дуга, которая периодически гаснет и вновь зажигается, что наводит в контуре с активными, индуктивными и емкостными элементами э.д.с, превышающие номинальные напряжения в 2,5...3 раза. Такие напряжения в системе при однофазном замыкании на землю недопустимы. Чтобы предотвратить возникновение перемежающихся дуг между нейтралью и землей включают индуктивную катушку с регулируемым сопротивлением.

Повышение напряжения по отношению к земле в неповрежденных фазах при наличии слабых мест в изоляции этих фаз может вызвать междуфазное короткое замыкание,. Кроме то

3

го, напряжение в неповрежденных фазах повышается в          раз, следовательно, требуется вы

полнять изоляцию всех фаз на линейное напряжение, что приводит к удорожанию машин и аппаратов. Поэтому, хотя и разрешается работа сети с изолированной нейтралью при замыкании фазы на землю, его требуется немедленно обнаружить и устранить.

Электрические сети с номинальным напряжением 110 кВ и выше работают с большими токами замыкания на землю (с эффективно заземленными нейтралями).

 

2.2.  Режим работы нейтрали в установках напряжением до 1 кВ

 

Электроустановки напряжением до 1 кВ работают как с глухозаземленной (четырехпро

водные сети), так и с изолированной (трехпроводные сети) нейтралью.

В наиболее распространенных четырехпроводных сетях напряжением до 380 В, общих для силовых и осветительных электроприемников, нейтраль и нейтральный провод обязательно заземляются. Это вызвано тем, что контроль изоляции нейтрального провода относительно земли практически неосуществим. Нейтральный провод, не имеющий заземления, с неустраненными скрытыми дефектами изоляции представляет собой пожарную опасность, так как при однофазном замыкании на землю образуется петля для протекания тока КЗ через нейтральный провод (рис. 2.1). При относительно малом сечении нейтрального провода этот ток может вызвать значительный его перегрев и возгорание.

 

 

Рис. 2.1. Схема четырехпроводной сети напряжением до 1 кВ с заземленной нейтралью трансформатора и занулением оборудования

 

Рис. 2.2. Принципиальная схема трехпроводной сети напряжением до 1 кВ с изолированной нейтралью трансформатора:

1 вторичная обмотка трансформатор

a:2:{s:4:"TEXT";s:72431:"

Таблица 3. 4 Технические данные магистральных шинопроводов переменного тока.

 

Показатель

ШЗ

М16

Ш

МА73

ШМА68Н

Номинальный ток, А

1600

1600

2500

4000

Номинальное напря

380/220

660

660

660

жение, В

 

 

 

 

Электродинамическая

70

70

70

100

стой кость ударному

 

 

 

 

току КЗ, кА

 

 

 

 

Активное сопротивле

0,018

0,031

0,027

0,013

ние на фазу, Ом/км

 

 

 

 

Реактивное сопротив

0,012

0,017

0,023

0,020

ление на фазу, Ом/км

 

 

 

 

Число и размеры шин

2(100x10)

2(90 х 8)

2(120x10)

2(160x10)

на фазу, мм

 

 

 

 

Число и сечение нулевых проводников, мм2

2x710

2x640

2x640

Максимальное рас

6000

6000

3000

3000

стояние между точка

 

 

 

 

ми крепления, мм

 

 

 

 

 

Таблица 3.5

 

Технические данные распределительных шинопроводов переменного тока

 

Показа

тель

 

ШРА73

 

ШРМ75

ШРА74

Номи

250

400

630

100

250

400

630

нальный ток, А

 

 

 

 

 

 

 

Номи

380/220

380/220

380/220

380/220

380/220

380/220

380/220

нальное напря

 

 

 

 

 

 

 

жение, В

 

 

 

 

 

 

 

Активное

0,20

0,13

0,085

    

0,15

0,15

0,14

сопротивление

 

 

 

 

 

 

 

на фазу, Ом/км

 

 

 

 

 

 

 

Реактив

0,10

0,10

0,075

0,20

0,20

0,10

ное сопротивле

 

 

 

 

 

 

 

ние на фазу,

 

 

 

 

 

 

 

Ом/км

 

 

 

 

 

 

 

Размеры

35x5

50x5

80x5

    

35x5

50x5

80x5

шин на фазу, мм

 

 

 

 

 

 

 

Максимальное расстояние между точками крепления, мм

3000

2000

3000

 

Таблица 3. 6

 

Технические данные троллейных шинопроводов переменного тока

 

Показатель

ШТМ73, ШТА75

ШТМ75, ШТА75

ШТА76

Номинальный ток, А

250

400

100

Номинальное напряжение, В

660

660

36...380

Частота, Гц

50...60

50...60

17...60

Номинальный ток токосъем

17,25

ной каретки, А

 

 

 

Номинальный ток токосъем

25

100

    

ной каретки со сборкой зажимов, А

 

 

 

Номинальный ток спаренной

15,4

токосъемной каретки, А

 

 

 

Номинальный ток спаренной

50

20

токосъемной каретки со сборкой за

 

 

 

жимов, А

 

 

 

Электродинамическая стой

10

15

5

кость ударному току КЗ, кА

 

 

 

Число шин, шт.

3

3

4

 

 

Таблица 3. 7 Технические данные осветительных шинопроводов переменного тока.

 

Показатель

ШОС22544

ШОС42544

ШОС8043

Номинальный ток,

А

Номинальное напряжение, В

Электродинамическая стойкость ударному току КЗ, кА

25

25

16

220

380/220

220

3

3

3

 

Магистральные шинопроводы собраны из алюминиевых прямоугольных изолированных шин, расположенных вертикально и зажатых внутри перфорированного кожуха со специальными изоляторами (рис. 3.19).

Число шин в магистральных шинопроводах: 3, 4, 6 (три спаренных). Магистральный шинопровод состоит из прямых и угловых секций с поворотом шин на ребро и плоскость, ответвительных вертикальных и горизонтальных (в том числе с автоматами и рубильниками) секций и др. Шины соединяют в основном сваркой при сборке блоков.

В шинопроводе ШМА73 кожух состоит из двух боковин двутаврового сечения и нижней перфорированных стальных крышек. Боковины (из алюминиевого сплава) используются в качестве нулевого провода.

Шинопровод ШМА68Н пригоден для использования в четырех проводных сетях при напряжении до 1000 В. Нулевым проводом в этом шинопроводе является четвертая шина, сечение которой составляет 50 или 100% сечения фазной шины.

Магистральные шинопроводы прокладываются на вертикальных стойках высотой 3 м. В качестве опорных конструкций применяют также кронштейны и тросовые подвески. В шинопроводе ШЗМ16шины фаз имеют сплошную изоляцию и плотно сжаты

 

 

Рис. 3.19. Магистральный шинопровод ШМА73:

а прямая секция; б поперечный разрез; 1 фазные шины; 2 изолятор: 3 эластичная прокладка; 4 верхняя крышка; 5 обойма; 6 болт; 7 боковая крышка; 8 изоляционная перегородка между шинами; 9 угольник крепления шинопровода к опорной  конструкции.

 

Рис. 3.20. Распределительные шинопроводы ШРА:

а общий вид прямой секции ШРА73; б шинопровод ШРА73В для вертикальной прокладки; 1 шина; 2

  • короб; 3 изолятор; 4 универсальная секция; 5 прямая секция; б кронштейн; 7 ответвительная коробка; 8 –

крышка.

 

профилированной оболочкой из алюминиевого сплава так, что обеспечивается непрерывное крепление шин по всей длине секции. Оболочка шинопровода сплошная, без отверстий, что делает эту конструкцию закрытой. В качестве нулевого проводника в шинопроводе ШЗМ16 используется его сплошная алюминиевая оболочка.

Кроме того, выпускают магистральные шинопроводы для агрессивных сред гальванических цехов ШМАХ на силу тока 2500 и 4000 А и шинопроводы постоянного тока ШМАД и ШМАДК на напряжение 1200 В и силу тока 1600...6300 А.

Распределительные шинопроводы (рис. 3.20) ШРА (с алюминиевыми шинами) и ШРМ (с медными шинами) предназначены для передачи и распределения электроэнергии напряжением 380/220 В при возможности непосредственного присоединения к ним электроприемников в системах с глухозаземленной нейтралью. Номинальный ток ШРА 250,400 и 630 А; ШРМ 100 и 250 А. Распределительные шинопроводы крепят так же, как и магистральные: на стойках, кронштейнах, подвесах (рис. 3.21).

 

Троллейные шинопроводы (рис. 3.22) ШТМ (с медными шинами) предназначены для питания подъемнотранспортных механизмов и переносных электрифицированных инструментов в сетях напряжением до 1000 В с глухозаземленной нейтралью. Номинальный ток шинопроводов 100, 200 и 400 А.

Комплектные троллейные шинопроводы ШТА выполняются с троллеями из алюминиевого сплава, номинальный ток шинопроводов 100, 250 и 400 А. Осветительные шинопроводы ШОС предназначены для групповых четырехпроводных линий в сетях напря

 

 

Рис. 3.21. Элементы шинопровода ШРА73: 1 — прямая секция; 2 секция с изгибом шин на ребро; 3 то же на плоскость; 4 вводная коробка; 5 ответвительная коробка с автоматом; 6 то же с предохранителем; 7то же с пусковым аппаратом; 8 заглушка торцевая; 9 коротка с указателем наличия напряжения; 10 12 конструкции для установки и крепления токопровода

 

жением до 1000 В с нулевым проводом для питания светильников и электроприемников небольшой мощности. Номинальный ток 25, 63, 100 А.

В качестве проводников используют медные изолированные провода (ШОС67), алюминиевые шины, плакированные медью (ШОС73А), и медные шины (ШОС73). Прямые и фигурные секции соединяют между собой четырехполюсным штепсельным разъемом. Каждая секция имеет с одной стороны гнезда, а с другой штыри разъема. На прямых секциях снизу через каждые 500 мм смонтированы соединительные розетки, которые закрыты                                                                      откидными крышками и служат для подключения светильников втычным контактом. Номинальный ток штепселя 10 А. Короб каждой секции заземлен с помощью нулевого провода. Короба на стыке секций крепятся с помощью муфты винтами.

 

Рис. 3.22. Троллейный шинопровод  ШТМ72:

а общий вид; б поперечный разрез; / троллей; 2 — крепление изолятора; 3 серьга подвески; 4  

изолятор; 5 короб; б корпус соединительной муфты; 7 уступ  короба.

 

Рис. 3.23. Осветительный шинопроводШОС73:

а общий вид; б штепсельное соединение секций; I прямая секция; 2 осветительный штепсель; 3 провод к светильнику; 4 соединительная муфта; 5 гнездо розетки; 6 –  изолятор

 

Светильники подвешивают к несущим конструкциям или непосредственно к осветительным шинопроводам. При этом общая нагрузка на 1 м шинопровода ШОС73 при максимальном пролете 3 м не должна составлять более 20 кг, а шинопровода ШОС76 при максимальном пролете 2 м 12 кг. На рис. 3.23 показана конструкция шинопровода ШОС.

 

Глава 4

 

ОСНОВНОЕ ЭЛЕКТРООБОРУДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ПОДСТАНЦИЙ

 

  • Силовые трансформаторы, автотрансформаторы и преобразовательные агре

гаты

 

4.1.1.   Общие сведения о силовых трансформаторах

 

Силовые трансформаторы являются основным электрическим оборудованием электроэнергетических систем, обеспечивающим передачу и распределение электроэнергии на переменном трехфазном токе от электрических станций к потребителям. С помощью трансформаторов напряжение повышается от генераторного до значений, необходимых для электропередач системы (35... 750 кВ), а также многократное ступенчатое понижение напряжения до значений, применяемых непосредственно в приемниках электроэнергии (0,22...0,66 кВ).

В справочных данных на трансформаторы приводятся: тип, номинальная мощность, номинальные напряжения обмоток, потери мощности холостого хода и короткого замыкания, напряжение короткого замыкания, ток холостого хода.

На повышающих и понизительных подстанциях применяют трехфазные или группы однофазных трансформаторов с двумя или тремя раздельными обмотками. В зависимости от числа обмоток трансформаторы разделяются на двухобмоточные и трехобмоточные. Двухобмоточные трансформаторы номинальной мощностью больше 25 MB·А выполняются с расщепленной обмоткой вторичного напряжения 6... 10 кВ. Обмотки высшего, среднего и низшего напряжений принято сокращенно обозначать соответственно ВН, СН, НН.

В настоящее время применяются трансформаторы следующих стандартных номинальных мощностей: 25, 40, 63, 100, 160, 250, 400, 630, 1000, 1600, 2500, 4000, 6300,  10000,

16000, 25 000, 32000, 40 000, 63 000, 80 000, 160 000 кВ·А.

Условные обозначения типов трансформаторов состоят из букв, которые обозначают: первые буквы: О однофазный, Т трехфазный;

последняя буква: Н выполнение одной обмотки с устройством регулирования напряжения под нагрузкой (РПН);

Р трансформатор с расщепленной обмоткой низшего напряжения; Т трехобмоточный трансформатор;

М, Д, ДЦ, С, 3 система охлаждения трансформаторов.

В настоящее время трансформаторы выполняются с переключением ответвлений обмотки без возбуждения (ПБВ) и с переключением ответвлений обмотки под нагрузкой РПН (табл. 4.1).

Переключение без возбуждения осуществляется после отключения всех обмоток от сети при помощи ответвлений обмотки ВН или СН. Трехфазные понижающие трансформаторы

 

Таблица 4. 1 Ответвления обмоток трансформаторов с РПН на обмотке  ВН

 

Вид трансформатора

Напряжение, кВ

Мощность, МВА

Число ответвлений

Двухобмоточный

35

1—6,3

±6 x 1,5%

 

110

6,3 и более

±9 x 1,78%

 

220

32... 160

±8 x 1,5%

Трехобмоточный

35

6,3

±6 х 1,5 %

 

110

6,3...80

±9 х 1,78 %

 

220

25 ...63

±8x1,5%

 

мощностью 25... 80 000 кВ·А напряжением до 35 кВ включительно имеют четыре ответвления (± 2 х 2,5 %) номинального напряжения. Понижающие трансформаторы напряжением ПО и 220 кВ имеют ответвления для ПБВ только в трехобмоточном исполнении на обмотках СН при напряжении 38,5 кВ.

Трансформаторы с воздушным охлаждением называются сухими (С). Изготовляются мощностью до 1600 кВ·А включительно для установки в закрытых помещениях. Преимущество сухих трансформаторов заключается в их пожаробезопасности и сравнительной простоте конструкции.

Естественное масляное охлаждение (М) применяется для трансформаторов мощностью до 6300 кВ·А.

При мощности трансформаторов 10 000 кВ·А и более применяется масляное охлаждение с воздушным дутьем (Д). Обдувание поверхности радиаторов позволяет увеличить теплоотдачу на 50% и более. В настоящее время трансформаторы снабжаются системой дутьевого охлаждения при помощи вентиляторов.

Масляное охлаждение с принудительной циркуляцией (Ц) позволяет значительно увеличить отвод тепла. К баку масляного трансформатора подключают центробежный насос, который прогоняет горячее масло через воздушный или водяной охладитель.

На трансформаторах мощностью 63 MB·А и более используют две системы охлаждения

ДЦ.

Трансформаторы с охлаждением негорючим жидким диэлектриком совтолом (Н) изго

товляются мощностью до 2500 кВ·А включительно.

Буква 3 обозначает, что трансформатор без расширителя и защита осуществляется с помощью азотной подушки.

Пример условного обозначения трансформатора ТРДН 40 000/110: трехфазный трансформатор с расщепленной обмоткой НН, масляным охлаждением, дутьем и естественной циркуляцией масла, РПН, номинальной мощностью 40 000 кВ·А, напряжением ПО кВ.

Важным параметром подключения трансформатора к сети является группа и схема соединений его обмоток. Группой соединений называют угловое (кратное 30°) смещение векторов между одноименными вторичными и первичными линейными напряжениями холостого хода трансформатора. Возможны четыре схемы соединения силовых трансформаторов: звезда Y, звезда с выведенной нейтралью YH, треугольник А, зигзаг Z. Группа соединений указывается числами от 0 до 12. Например, 11 соответствует углу 330°.

На электрических станциях и подстанциях наибольшее распространение получили следующие схемы и группы соединений двухобмоточных трансформаторов:

звезда звезда с выведенной нейтралью Y/YH  12;

звезда треугольник Y/Δ 11;

звезда с выведенной нейтралью треугольник YH/Δ 11.

В трехобмоточных трансформаторах наиболее часто применяются соединения: звезда звезда с выведенными нейтралями треугольник Y/YH/Δ 11, 12.

 

4.1.2.   Общие сведения об автотрансформаторах.

 

Автотрансформаторы применяются при небольших коэффициентах трансформации (менее 2), при которых они более экономичны, чем трансформаторы. Кроме того, автотрансформаторы применяются в сетях напряжением 220 кВ и выше для регулирования напряжения (линейные регуляторы).

Автотрансформаторы с первичным напряжением ВН 220 кВ имеют номинальные мощности 32, 63, 125 и 200 MB·А.

Маркировка автотрансформаторов начинается с буквы А, например, АТДЦТН 2000000/220 обозначает автотрансформатор трехфазный с масляным охлаждением с принудительной циркуляцией и дутьем, трехобмоточный, с РПН, номинальной мощностью 200 000 кВ·А, напряжением 220 кВ.

 

Трехфазные трехобмоточные автотрансформаторы изготовляются с соединением обмоток ВН (220 кВ) и СН (110 кВ) в звезду и добавочной обмотки НН (6,3 ...38,5 кВ) в треугольник.

 

4.1.3.   Преобразовательные агрегаты.

 

Преобразовательные агрегаты предназначены для питания:

электролизных установок цветной металлургии и химической промышленности; дуговых вакуумных и графитировочных электропечей;

установок для электрохимической обработки металлов и гальваностегии;

цеховых сетей постоянного тока, от которых питаются электроприводы, не требующие регулирования подводимого к ним напряжения.

В качестве преобразователей переменного тока в постоянный используются кремниевые выпрямительные агрегаты. Характеристики преобразовательных установок, для которых предназначены эти агрегаты, приведены в табл. 4.2.

Для электролизных установок цветной металлургии и химической промышленности применяются кремниевые выпрямительные агрегаты. Каждый агрегат состоит из трансформатора, одного или двух, или четырех выпрямительных блоков, и другого комплектующего оборудования. Трансформаторы для полупроводниковых агрегатов электролизных установок применяются типа ТДНП 10 000... 40 000/10...35 трехфазные с РПН.

Кремниевые выпрямительные агрегаты для дуговых вакуумных электропечей и графитировочных печей аналогичны выпрямительным блокам агрегатов для электролизных установок. Трансформаторы для выпрямительных агрегатов дуговых вакуумных электропечей применяются типа ТМНПВ 4000... 12 500/6... 10.

 

 

Таблица 4 . 2

 

Характеристики преобразовательных установок

 

Назначение

Параметры

Характеристика режима работы

Сила тока, кА

Напряжение, В

Регулирование выпрямленного напряжения

График нагрузки

Электролизное произ

водство

Дуговые вакуумные печи Графитированные печи

Электрохимическая обработка метал

лов Электрифицированный транспорт

Цеховые сети постоянно

го тока

12,5... 175

75, 150, 300,450,

Требуется

Равномерный

 

600, 850

 

непрерывный

12,5 ...37,5

75

»

Равномерный

25...200

150, 300

»

Неравномерный

0,1...25

6, 12, 24,

»

Преимущественно

 

48

 

равномерный

 

0,5... 3,2

 

275,600,825,1650,

 

Не требуется

 

Преимущественно

 

3300

 

неравномерный

14

230

»

Преимущественно

 

 

 

равномерный

 

Для питания вакуумных электропечей применяются также параметрические источники тока (ПИТ), главной особенностью которых является высокая точность стабилизации тока нагрузки при емкостном характере коэффициента мощности и при его значении, равном единице. ПИТ состоит из трансформатора, трехфазного резонансного реактора, конденсаторной установки, выпрямителя и вспомогательных устройств. Разработаны ПИТ на номинальные токи 12,5; 25; 37,5; 50 кА и номинальное напряжение 75 В.

В установках для электрохимической обработки металлов и нанесения различных гальванических покрытий применяют кремниевые преобразовательные агрегаты. Для таких установок требуется регулирование выпрямленного тока в широких пределах, что обеспечивается соответствующим регулированием напряжения. Агрегаты ВАКР и ВАК выполнены на тиристорах и могут работать в режиме автоматического и ручного регулирования выпрямленного напряжения и тока.

 

4.2.   Коммутационная аппаратура напряжением выше 1 кВ.

 

4.2.1.   Выключатели напряжением выше 1 кВ.

 

Выключатель предназначен для коммутации рабочих и аварийных токов. При разрыве цепи разомкнувшимися контактами выключателя возникает электрическая дуга, которая должна гаситься в специальных устройствах. Контакты выключателя находятся внутри камеры в разомкнутом состоянии. Дугогасительные устройства выключателей используют следующие принципы быстрого гашения дуги: охлаждение дуги посредством перемещения ее в окружающей среде; обдувание дуги воздухом или холодными неионизированными газами; расщепление дуги на несколько параллельных дуг малого сечения; удлинение, дробление и соприкосновение дуги с твердым диэлектриком; размещение контактов в интенсивно деионизирующей среде; создание высокого давления в дуговом промежутке и т. п.

В зависимости от применяемой дугогасительной среды выключатели бывают жидкостные и газовые, из них наиболее распространены масляные и воздушные. В масляных выключателях дугогасительной средой является трансформаторное масло, в воздушных сжатый воздух. Кроме воздушных и масляных имеется много других видов выключателей. Так, в автогазовых выключателях используется дутье газов, образующихся под действием высокой температуры дуги. В элегазовых выключателях гашение дуги осуществляется в среде элегаза.

Выпускаемые отечественной промышленностью масляные выключатели имеют две конструктивные разновидности: многои малообъемные. В выключателях с большим объемом масла трансформаторное масло используется для гашения дуги и изоляции токоведущих частей друг от друга и от земли. Эти выключатели применяются на напряжении 35 кВ и выше с номинальными токами 630... 2000 А. Многообъемные масляные выключатели предназначены для наружной установки.

В малообъемных масляных выключателях трансформаторное масло используется только как средство гашения дуги; бачки (или горшки, или колонки) этих выключателей во время работы находятся под напряжением, поэтому они изолируются от заземленных частей посредством наружных изоляторов. Маломасляные выключатели применяются на напряжении 10 (6)...35 кВ.

В воздушных выключателях гашение дуги производится сжатым воздухом. В большинстве конструкций воздушных выключателей гасительные камеры размещаются в фарфоровых изоляторах. Эти выключатели применяются на напряжении 35 кВ и выше, в основном для наружной установки.

Для сетей напряжением 6 и 10 кВ выпускаются выключатели с электромагнитным дутьем, а также вакуумные выключатели.

 

Управление выключателем, т.е. его включение и отключение, может производиться вручную, дистанционно или автоматически. Механизм для включения и отключения выключателя называется приводом. У большинства выключателей он представляет собой отдельный аппарат электромагнитный, пружинный, грузовой или пневматический, соединяемый с приводным валом выключателя.

 

4.2.2.  Выключатели нагрузки напряжением выше 1 кВ

 

В установках напряжением 6... 10 кВ, особенно в распределительных пунктах, на цеховых подстанциях предприятий, в городских сетях, широко используются выключатели нагрузки с небольшой дугогасительной камерой, в которой может быть отключен ток только рабочего режима, но они не рассчитаны на отключение тока короткого замыкания. При размыкании контактов выключателя нагрузки создается видимый разрыв цепи.

Выключатели нагрузки в сочетании с высоковольтными предохранителями (ВНП) в известной мере заменяют силовой выключатель. Выключатели нагрузки выполняются на номинальные токи 200 и 400 А, наибольший рабочий ток отключения 400 и 800 А.

 

4.2.3.   Плавкие предохранители напряжением выше 1 кВ

 

Плавкие предохранители выполняют операцию автоматического отключения цепи при превышении определенного значения тока. После срабатывания предохранителя необходимо сменить плавкую вставку или патрон, чтобы подготовить аппарат для дальнейшей работы.

Ценными свойствами плавких предохранителей являются простота устройства, относительно малая стоимость, быстрое отключение цепи при коротком замыкании (меньше одного периода), способность предохранителей типа ПК ограничивать ток в цепи при КЗ.

К недостаткам плавких предохранителей относятся следующие: предохранители срабатывают при токе, значительно превышающем номинальный ток плавкой вставки, и поэтому избирательность (селективность) отключения не обеспечивает безопасность отдельных участков сети; отключение цепи плавкими предохранителями связано обычно с перенапряжением; возможно однофазное отключение и последующая ненормальная работа установок.

Несмотря на указанные недостатки, плавкие предохранители широко применяются для защиты силовых трансформаторов мощностью до 2500 кВА на напряжении 10 кВ, электродвигателей, распределительных сетей и измерительных трансформаторов напряжения.

Наибольшее распространение получили кварцевые и газогенерирующие предохраните

ли.

В кварцевых предохранителях (ПК) патрон заполнен кварцевым песком, и дуга гасится

путем удлинения, дробления и соприкосновения с твердым диэлектриком.

В газогенерирующих предохранителях для гашения дуги используются твердые газогенерирующие материалы (фибра, винипласт и др.). Газогенерирующие предохранители выполняются с выхлопом и без выхлопа газа из патрона при срабатывании. Предохранители с выхлопом газа из патрона называют также стреляющими (ПСН 10 и ПС 35), поскольку срабатывание их сопровождается звуком, похожим на ружейный выстрел. Предохранители напряжением выше 1 кВ выполняются как для внутренней, так и для наружной установки.

 

4.3.  Разъединители, отделители и короткозамыкатели напряжением выше 1 кВ

 

Разъединителем называется электрический аппарат для оперативного переключения под напряжением участков сети с малыми токами замыкания на землю и создания видимого разрыва. По условиям техники безопасности при производстве работ в установках необходимо иметь видимые разрывы цепи, откуда может быть подано напряжение. Указанное требование обеспечивается разъединителями, которые не имеют устройств для гашения дуги и не допускают переключений под нагрузкой. Поэтому их оснащают блокировкой, предотвращающей отключе

 

ние нагрузочного тока. Правилами устройства электроустановок допускается отключать разъединителями холостой ток открыто установленных трансформаторов: напряжением 10 кВ мощностью до 630 кВ·А; напряжением 20 кВ мощностью до 6300 кВ·А; напряжением 35 кВ мощностью до 20 000 кВ·А; напряжением 110 кВ мощностью до 40 500 кВ·А; уравнительный ток линий при разности напряжений не более 2 %, заземление нейтралей трансформаторов и дугогасящих катушек, токи замыкания на землю (не превышающие 5 А при напряжении 35 кВ и 10 А при напряжении 10 кВ), а также небольшие зарядные токи линий.

Конструктивно разъединители могут быть внутренней и наружной установок. Разъединители управляются приводами вручную или дистанционно (но не автоматиче

ски).

Отделителями называются аппараты напряжением от 35 кВ и выше, имеющие надеж

ную конструкцию контактов и снабженные специальным приводом, позволяющим осуществлять автоматическое отключение подвижной части отделителя. Отделители напряжением 35

...220 кВ допускают отключение тока холостого хода трансформаторов и зарядного тока воздушных линий электропередач любой протяженности при бестоковой паузе, обусловленной действием защиты и автоматического повторного включения. Включение отделителей производится вручную.

Короткозамыкателями называются аппараты напряжением от 35 кВ и выше, имеющие надежную конструкцию контактов и снабженные специальным приводом, позволяющим осуществлять автоматическое включение ножа короткозамыкателя. При включении ножа короткозамыкателя создается металлическое короткое замыкание на подстанциях без выключателей. В сетях с заземленной нейтралью короткозамыкатели однополюсные и создают однофазное КЗ на землю. В сетях с изолированной нейтралью короткозамыкатели имеют два полюса и создают двухфазное КЗ.

 

4.4.  Изоляторы и шины распределительных устройств напряжением выше 1 кВ

 

Токоведущие части электроустановок крепятся и изолируются друг от друга и по отношению к земле при помощи изоляторов. Изоляторы для электроустановок напряжением выше 1 кВ изготовляются из фарфора.

Изоляторы делятся на линейные, станционные и аппаратные.

Линейные изоляторы предназначаются для крепления проводов воздушных линий; аппаратные для крепления токоведущей части аппаратов; станционные для крепления шин в распределительных устройствах.

Станционные изоляторы в свою очередь подразделяются на опорные и проходные. Опорные изоляторы ОА, ОБ, ОВ, ОГ, ОД, ОЕ (с механической прочностью А, Б, В, Г,  Д,

Е) для внутренних установок на напряжение 6...35 кВ служат для крепления шин и аппаратуры распределительных устройств. Изготовляются они с овальным, круглым или квадратным основанием; металлические части (арматура) для крепления изоляторов заделываются снаружи фарфорового корпуса.

Опорные изоляторы для наружных установок изготовляются штыревыми (ШТ35) и стержневыми (СО35, СТ110). Для повышения электрической прочности эти изоляторы выполняются с более развитой, чем внутренней установки, поверхностью (ребристые).

Проходные изоляторы (для внутренних и наружных установок) предназначены для вывода токоведущих частей из зданий и прокладки шин через стены и перекрытия.

Наибольшее применение находят проходные изоляторы ПА и ПБ с токоведущими стержнями прямоугольного сечения на напряжение 6... 10 кВ и силу тока 600... 1500 А.

Для установок напряжением 35 кВ и выше проходные изоляторы выполняются обычно с круглыми токоведущими стержнями.

Шины в распределительных устройствах напряжением выше 1 кВ изготовляются из меди и алюминия и имеют круглое, прямоугольное и коробчатое сечение.

 

В закрытых установках медные шины применяются только в особых случаях, в открытых установках в агрессивной среде (морское побережье, территория химических заводов).

Как правило, в распределительных устройствах применяются алюминиевые шины. В закрытых установках напряжением до 35 кВ устанавливаются шины прямоугольного (плоского) сечения. В открытых установках шины выполняются круглыми многопроволочными сталеалюминевыми проводами.

В зависимости от значения тока шины собирают по одной, две, три и больше полосы в одном пакете на фазу.

Для силы тока больше 3000 А применяют шины коробчатого сечения. Шина фазы А окрашивается в желтый цвет, В в зеленый, С в красный.

При монтаже жестких плоских и коробчатых шин (если длина ошиновки для алюминия больше 15 м) шины каждой фазы делятся на отдельные участки, соединяемые гибкими перемычкамикомпенсаторами. Среднюю точку каждого пролета шин глухо закрепляют на соответствующем изоляторе. На других изоляторах ставят приспособления для продольного перемещения шин, вызываемого изменением их температуры. Для предохранения контактных соединений от окисления шины не должны работать при температуре выше 70 °С.

 

4.5.  Коммутационные аппараты напря

a:2:{s:4:"TEXT";s:110408:"

В табл. 4.3 приведены некоторые характеристики автоматических выключателей. Таблица 4 . 3

Характеристики автоматических выключателей напряжением до 1 кВ

 

Тип

Номинальный ток, А

Исполнение

Вид расцепителя

Селективность

Э

 

ВА62 А3710Б... А3740Б А3730С, А3740С А3710Ф..

. А3730Ф АЕ20 АП50Б

1000...6300

 

1600

160...630

 

400, 630

 

160...630

 

10... 100

1,6...63

Стационарное, выдвижное

»

Токоограничивающее

»

 

Нетокоограничивающее

»

»

Полупроводниковый

 

»

Полупроводниковый, электромагнитный Полупроводниковый

 

Электромагнитный, термобиметаллический Комбинированный

»

+

 

+

 

+

 

 

 

 

4.5.3.   Контакторы и магнитные пускатели

 

Контактор это аппарат дистанционного действия, предназначенный для частых включений и отключений под нагрузкой силовых электрических цепей. Контакторы не защищают электрические цепи от ненормальных режимов, поскольку у них отсутствуют защитные элементы. Контактор состоит из электромагнитной системы, обеспечивающей дистанционное управление; главных контактов силовой цепи; дугогасительного устройства; блокконтактов, включаемых в цепь автоматики и сигнализации. Контакторы нашли широкое применение в силовых цепях переменного и постоянного тока.

 

В цепях переменного тока применяют преимущественно трехполюсные контакторы серии КТ с номинальными токами 63... 1000 А. Контакторы при числе полюсов два или три допускают 600... 1200 включений в час.

В сетях постоянного тока применяют контакторы серии КТП с номинальными токами

80...630 А.

Магнитный пускатель это трехполюсный контактор переменного тока, в котором дополнительно встроены два тепловых реле защиты, включенных последовательно в две фазы главной цепи двигателя. Магнитные пускатели предназначены для управления (пуска, останова, реверса) трехфазных асинхронных двигателей с короткозамкнутым ротором мощностью до 75 кВт, а также для защиты их от перегрузки. В отдельных случаях магнитные пускатели используют для включения и отключения некоторых электроустановок, требующих дистанционного управления (наружное и внутреннее освещение, автоматизированные электроприводы и т. п.). Защита электродвигателя от перегрузок осуществляется тепловым реле РТ. Тепловое реле надежно защищает электродвигатель от перегрузки, но не обеспечивает защиты от коротких замыканий.

Объясняется это тем, что тепловое реле имеет большую тепловую инерцию. При коротком замыкании ток может повредить цепи раньше, чем сработает тепловое реле. Кроме того, контакты магнитных пускателей не рассчитаны на отключение токов короткого замыкания. Поэтому в случае применения магнитных пускателей (с тепловыми реле для защиты от перегрузок) для защиты от токов коротких замыканий необходимо устанавливать последовательно с тепловыми реле плавкие предохранители или автоматы с электромагнитными расцепителями.

Магнитный пускатель отключает двигатель от сети при исчезновении напряжения или его понижении до 50... 70% от номинального  значения.

До последнего времени наибольшее применение в электрических сетях имели магнитные пускатели серий ПМЕ, ПАЕ, ПМА, однако в настоящее время они заменяются пускателями серий ПМЛ и ПКЛ на номинальные рабочие токи от 4 до 200 А.

Кроме указанных аппаратов в сетях напряжением до 1 кВ используются для коммутации кнопки управления, командоаппараты, переключатели и кнопочные посты управления.

 

Глава 5

 

СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ В СИСТЕМЕ ЭЛЕКТРОСНАБЖЕНИЯ

 

5.1.  Общие сведения

 

Система электроснабжения объекта состоит из питающих, распределительных, трансформаторных и преобразовательных подстанций и связывающих их кабельных и воздушных сетей, а также токопроводов.

Схемы электрических соединений электроустановок выполняются для первичных и вторичных цепей.

К первичным цепям относятся главные цепи электроустановок, по которым электрическая энергия подается к потребителям; их схемы выполняются однолинейными и трехлинейными.

В однолинейных схемах три фазы установки и ее оборудование условно изображаются для одной фазы. На трехлинейных схемах указываются соединения для всех трех фаз, а также вторичные цепи. Полная схема получается громоздкой, поэтому она выполняется только для отдельных элементов установки.

К вторичным цепям относятся цепи, служащие для соединения вторичного электрооборудования измерительных приборов, приборов и аппаратов управления и сигнализации, устройств релейной защиты и автоматики.

В данном разделе рассматриваются первичные цепи в однолинейном изображении.

 

5.2.   Выбор номинальных напряжений

 

Выбор напряжений участков электрической сети объекта определяется путем техникоэкономического сравнения вариантов. При выборе окончательного проектного решения, принимаемого на основе сравнения вариантов, необходимо отдавать предпочтение варианту с более высоким напряжением. В большинстве случаев проектировщик определяет напряжения в пределах двух ближайших по шкале номинальных значений напряжения, для которых и проводится сравнение вариантов. В ряде случаев исходные данные для проектирования приводят к однозначному определению номинального напряжения без детальных техникоэкономических расчетов.

При выборе номинального напряжения внешнего участка сети принимаются во внимание существующие напряжения возможных источников питания энергосистемы, расстояние от этих источников до предприятия и нагрузка предприятия в целом.

В питающих и распределительных сетях небольших и средних предприятий и городов применяются номинальные напряжения 6 и 10 кВ. Как правило, следует применять напряжение 10 кВ как более экономичное, чем напряжение 6 кВ. Напряжение 6 кВ применяется при преобладании на объекте электроприемников с напряжением 6 кВ. В ряде случаев электроснабжение электроприемников с напряжением 6 кВ осуществляется по питающим линиям напряжением 10 кВ с последующей трансформацией на напряжение 6 кВ непосредственно для данных электроприемников.

Напряжение 660 В как внутрицеховое целесообразно на тех предприятиях, на которых по условиям расположения цехового технологического оборудования или окружающей среды нельзя или затруднительно приблизить цеховые трансформаторные подстанции к питаемым ими электроприемникам. Напряжение 660 В целесообразно также на предприятиях с большой удельной плотностью электрических нагрузок, концентрацией мощностей и большим числом двигателей мощностью 200... 600 кВт. Наиболее целесообразно сочетание напряжения 660 В с первичным напряжением 10 кВ. Необходимо учитывать, что при применении напряжения 660 В возникает необходимость и в сетях напряжением 380 В для питания небольших электродвигателей и светотехнических установок. Наиболее широко применяется и является основным напряжение 380/220 В.

 

5.3.   Источники питания и пункты приема электроэнергии объектов на напряжении

выше 1 кВ

 

  • Источники питания и требования к надежности электроснабжения

 

Электроснабжение объекта может осуществляться от собственной электростанции (ТЭЦ), энергетической системы, а также от энергетической системы при наличии собственной электростанции.

Требования, предъявляемые к надежности электроснабжения от источников питания, определяются потребляемой мощностью объекта и его видом.

Приемники электрической энергии в отношении обеспечения надежности электроснабжения разделяются на несколько категорий.

Первая категория – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования, расстройство сложного технологического процесса, массовый брак продукции. Примером электроприемников первой категории в промышленных установках могут быть электроприемники насосных станций противопожарных установок, системы вентиляции в химически опасных цехах, водоотливных и подъемных установок в шахтах и т. п. В городских сетях к первой категории относят центральные канализационные и водопроводные станции, АТС, радио и телевидение, а также лифтовые установки высотных зданий. Допусти

 

мый интервал продолжительности нарушения электроснабжения для электроприемников первой категории не более 1 мин.

Из состава электроприемников первой категории выделяется особая группа (нулевая категория) электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы для жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования. Например, к электроприемникам нулевой категории относятся операционные помещения больниц, аварийное освещение.

Вторая категория – электроприемники, перерыв электроснабжения которых приводит к массовым недоотпускам продукции, массовым простоям рабочих, механизмов. Допустимый интервал продолжительности нарушения электроснабжения для электроприемников второй категории не более 30 мин.

Примером электроприемников второй категории в промышленных установках являются приемники прокатных цехов, основных цехов машиностроения, текстильной и целлюлознобумажной промышленности. Школы, детские учреждения и жилые дома до пяти этажей и т.п. обычно относят к приемникам второй категории.

Третья категория – все остальные электроприемники, не подходящие под определение первой и второй категорий. К этой категории относятся установки вспомогательного производства, склады неответственного назначения.

Электроприемники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания, при отключении одного из них переключение на резервный должно осуществляться автоматически. Согласно определению ПУЭ независимыми источниками питания являются такие, на которых сохраняется напряжение при исчезновении его на других источниках, питающих эти электроприемники. Согласно ПУЭ к независимым источникам могут быть отнесены две секции или системы шин одной или двух электростанций или подстанций при соблюдении следующих условий:

каждая их этих секций или систем шин питается от независимых источников;

секции шин не связаны между собой или же имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций шин.

Для электроснабжения электроприемников особой группы должен предусматриваться дополнительный третий источник питания, мощность которого должна обеспечивать безаварийную остановку процесса.

Электроприемники второй категории рекомендуется обеспечивать от двух независимых источников питания, переключения можно осуществлять не автоматически.

Электроснабжение электроприемников третьей категории может выполняться от одного источника при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного оборудования, не превышают одних суток.

  • Схемы подключения источников питания Электроснабжение от собственной электростанции (рис. 5.1). При расположении соб

ственной электростанции вблизи от объектов и при совпадении напряжений распределительной сети и генераторов электростанции трансформаторы присоединяются к шинам распределительных устройств (РУ) электростанции или непосредственно, или с помощью линий электропередач.

Электроснабжение от энергетической системы при отсутствии собственной электростанции(рис. 5.2 и 5.3).

 

Рис. 5.1. Схема электроснабжения от собственной  электростанции

 

Рис. 5.2. Схема электроснабжения от электрической системы при напряжении 6...20  кВ

 

 

 

 

Рис. 5.3. Схема электроснабжения от электрической системы при напряжении 35...220кВ

 

В зависимости от напряжения источника питания электроснабжение осуществляется двумя способами: по схеме, представленной на рис. 5.2, при напряжении 6... 20 кВ; по схеме, представленной на рис. 5.3, при напряжении 35 ... 330 кВ. В указанных и приводимых далее схемах разъединители и реакторы не показаны. Схемы, представленные на рис. 5.2 и 5.3, применимы, если предприятие находится на расстоянии не более 5...10 км от подстанции системы.

 

5.3.3.   Типы электроподстанций

 

Число и тип приемных пунктов электроэнергии (подстанций) зависят от мощности, потребляемой объектом электроснабжения, и характера размещения электропотребителей на территории объекта. При сравнительно компактном расположении потребителей и отсутствии осо

 

бых требований к надежности электроснабжения вся электроэнергия от источника питания может быть подведена к одной трансформаторной (ТП) или распределительной подстанции (РП). При разбросанности потребителей и повышенных требованиях к бесперебойности электроснабжения питание следует подводить к двум и более подстанциям.

При близости источника питания к объекту и потребляемой им мощности в пределах пропускной способности линий напряжением 6 и 10 кВ электроэнергия подводится к распределительной подстанции РП или к главной распределительной подстанции (ГРП). РП служат для приема и распределения электроэнергии без ее преобразования или трансформации.

От РП электроэнергия подводится к ТП и к электроприемникам напряжением выше 1 кВ, т.е. в этом случае напряжения питающей и распределительной сети совпадают.

Если же объект потребляет значительную (более 40 MB·А) мощность, а источник питания удален, то прием электроэнергии производится на узловых распределительных подстанциях или на главных понижающих подстанциях.

Узловой распределительной подстанцией (УРП) называется центральная подстанция объекта напряжением 35 ... 220 кВ, получающая питание от энергосистемы и распределяющая ее по подстанциям глубоких вводов на территории объекта. Главной понижающей подстанцией (ГПП) называется подстанция, получающая питание непосредственно от районной энергосистемы и распределяющая энергию на более низком напряжении (6 или 10 кВ) по объекту.

Подстанцией глубокого ввода (ПГВ) называется подстанция на напряжение 35...220 кВ, выполненная по упрощенным схемам коммутации на первичном напряжении, получающая питание непосредственно от энергосистемы или от УРП. ПГВ обычно предназначается для питания отдельного объекта (крупного цеха) или района предприятия.

 

5.4.   Принципы выбора схемы распределения электроэнергии

 

Система электроснабжения может быть выполнена в нескольких вариантах, из которых выбирается оптимальный. При его выборе учитываются степень надежности, обеспечение качества электроэнергии, удобство и безопасность эксплуатации, возможность применения прогрессивных методов электромонтажных работ.

Основные принципы построения схем объектов:

максимальное приближение источников высокого напряжения 35 ...220 кВ к электроустановкам потребителей с подстанциями глубокого ввода, размещаемыми рядом с энергоемкими производственными корпусами;

резервирование питания для отдельных категорий потребителей должно быть заложено в схеме и элементах системы электроснабжения. Для этого линии, трансформаторы и коммутационные устройства должны нести в нормальном режиме постоянную нагрузку, а в послеаварийном режиме после отключения поврежденных участков принимать на себя питание оставшихся в работе потребителей с учетом допустимых для этих элементов перегрузок;

секционирование шин всех звеньев системы распределения энергии, а при преобладании потребителей первой и второй категории установка на них устройств АВР.

Схемы строятся по уровневому принципу. Обычно применяются дватри уровня. Первым уровнем распределения электроэнергии является сеть между источником питания объекта и ПГВ, если распределение производится при напряжении 110...220 кВ, или между ГПП и РП напряжением 6... 10 кВ, если распределение происходит на напряжении 6... 10 кВ.

Вторым уровнем распределения электроэнергии является сеть между РП (или РУ вторичного напряжения ПГВ) и ТП (или отдельными электроприемниками высокого напряжения).

На небольших и некоторых средних объектах чаще применяется только один уровень распределения энергии между центром питания от системы и пунктами приема энергии (ТП или высоковольтными электроприемниками).

 

5.5.  Схемы электрических сетей внутри объекта на напряжении 6... 10 кВ

 

Электрические сети внутри объекта выполняются по магистральным, радиальным или смешанным схемам.

Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приема расположены в различных направлениях от центра питания. Они могут быть двухили одноступенчатыми. На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с промежуточными РП выполняются для крупных и средних объектов с подразделениями, расположенными на большой территории. При наличии потребителей первой и второй категории РП и ТП питаются не менее чем по двум раздельно работающим линиям. Допускается питание электроприемников второй категории по одной линии, состоящей не менее чем из двух кабелей.

При двухтрансформаторных подстанциях каждый трансформатор питается отдельной линией по блочной схеме линия трансформатор. Пропускная способность блока в послеаварийном режиме рассчитывается исходя из категорийности питаемых потребителей.

При однотрансформаторных подстанциях взаимное резервирование питания небольших групп приемников первой категории осуществляется при помощи кабельных или шинных перемычек на вторичном напряжении между соседними подстанциями.

Вся коммутационная аппаратура устанавливается на РП или ГПП, а на питаемых от них ТП предусматривается преимущественно глухое присоединение трансформаторов. Иногда трансформаторы ТП присоединяются через выключатель нагрузки и разъединитель.

Радиальная схема с промежуточным РП, в которой выполнены указанные выше условия, приведена на рис. 5.4.

Радиальная схема питания обладает большой гибкостью и удобствами в эксплуатации, так как повреждение или ремонт одной линии отражается на работе только одного потребителя.

Магистральные схемы напряжением 6... 10 кВ применяются при линейном («упорядоченном») размещении подстанций на территории объекта, когда линии от центра питания до пунктов приема могут быть проложены без значительных обратных направлений. Магистральные схемы имеют следующие преимущества: лучшую загрузку кабелей при нормальном режиме, меньшее число камер на РП. К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении.

Число трансформаторов, присоединяемых к одной магистрали, обычно не превышает двухтрех при мощности трансформаторов 1000...2500 кВА и четырехпяти при мощности 250...630 кВА.

Магистральные схемы выполняются одиночными и двойными, с односторонним и двухсторонним питанием.

 

Рис. 5.4. Радиальная схема  электроснабжения

 

Одиночные магистрали без резервирования (рис. 5.5, а) применяются в тех случаях, когда отключение одного потребителя вызывает необходимость по условиям технологии производства отключения всех остальных потребителей (например, непрерывные технологические линии). При кабельных магистралях их трасса должна быть доступна для ремонта в любое время года, что возможно при прокладке в каналах, туннелях и т. п. Надежность схемы с одиночными магистралями можно повысить, если питаемые ими однотрансформаторные подстанции расположить таким образом, чтобы была возможность осуществить частичное резервирование по связям низкого напряжения между ближайшими подстанциями. На рис. 5.6 показана схема, на которой близко расположенные трансформаторные подстанции питаются от разных одиночных магистралей с резервированием по связям на низком напряжении. Такие магистральные схемы можно применять и для потребителей первой категории, если их мощность не превышает 15...20% от общей нагрузки трансформаторов. Трансформаторы подключаются к разным магистралям, присоединенным к разным секциям РП или РУ.

 

 

Рис. 5.5. Магистральные схемы с односторонним питанием: а одиночные; 6 двойные с  резервированием

на НН

 

Одиночные магистрали с глухими отпайками, т.е. без разъединителей на входе и выходе магистрали применяются главным образом на воздушных линиях. На кабельных линиях глухое присоединение может быть применено лишь для питания неответственных подстанций мощностью не выше 400 кВ·А.

Схемы с двойными («сквозными») магистралями (см. рис. 5.5, б) применяются для питания ответственных и технологически слабо связанных между собой потребителей одного объекта. Установка разъединителей на входе и выходе линии магистрали не требуется.

На крупных предприятиях применяются два или три магистральных токопровода(рис. 5.7), прокладываемые по разным трассам через зоны размещения основных электрических нагрузок. На менее крупных предприятиях применяются схемы с одиночными двухцепными токопроводами. На ответвлениях от токопроводов к распределительным подстанциям устанавливаются реакторы для ограничения мощности короткого замыкания до величины отключаемой мощности выключателей типа ВМП. От каждого трансформатора питаются два токопровода перекрестно, т.е. разные цепи каждого токопровода питаются от разных трансформаторов.

Одиночные и двойные магистрали (рис. 5.8) с двусторонним питанием («встречные» магистрали) применяются при питании от двух независимых источников, требуемых по условиям обеспечения надежности электроснабжения для потребителей первой и второй категории. При использовании в нормальном режиме обоих источников производится деление магистрали примерно посередине на одной из промежуточных подстанций. Секционные выключатели нормально разомкнуты и снабжены устройством АВР.

 

Рис. 5.6. Схема одиночных магистралей с частичным резервированием по связям вторичного напряжения

 

 

Рис. 5.7. Магистральная схема распределения электроэнергии с применением мощных токопроводов.

 

Смешанные схемы питания, сочетающие принципы радиальных и магистральных систем распределения электроэнергии, имеют наибольшее распространение на крупных объектах. Так, например, на первом уровне обычно применяются радиальные схемы. Дальнейшее распределение энергии от РП к цеховым ТП и двигателям высокого напряжения на таких объектах производится как по радиальным, так и по магистральным схемам.

Степень резервирования определяется категорийностью потребителей. Так, потребители первой категории должны обеспечиваться питанием от двух независимых источников. В качестве второго источника питания могут быть использованы не только секционированные сборные шины электростанций или подстанций, но также и перемычки в сетях на низшем напряжении, если они подают питание от ближайшего распределительного пункта, имеющего независимое питание с АВР.

Для особо ответственных потребителей, отнесенных к особой группе первой категории, должно предусматриваться электроснабжение от трех независимых источников. Каждый из двух основных источников должен полностью обеспечивать питание потребителя, а третий независимый источник иметь минимальную мощность для безаварийного останова производства. Третьим независимым источником может быть, например, дизельная станция, которая при отключении одного из двух независимых источников включается на холостой ход и находится в режиме «горячего» резерва.

 

Рис. 5.8. Магистральная схема встречная с двусторонним  питанием

 

Во избежание перегрузки третьего источника предусматривается отключение остальных потребителей перед вводом третьего источника.

В крупных городах большое распространение получила распределительная сеть напряжением 6... 10 кВ, выполненная по петлевой схеме.

На рис. 5.9 изображена петлевая линия, питающаяся от одного РП. В нормальном режиме петлевая линия разомкнута разъединителем Р1 и каждая магистральная линия питается от РП независимо. При повреждении какоголибо участка на одной из линий автоматически отключается выключатель на головном участке В1 или В2 и прекращается питание всех потребителей, присоединенных к поврежденной линии. Найдя место повреждения, этот участок вручную отключают разъединителями, замкнув перемычку А Б разъединителем Р1, восстанавливают питание потребителей. Самым тяжелым случаем для такой линии будет повреждение в точке К, так как питание всей нагрузки в послеаварийном режиме будет осуществляться по одной линии. Электрооборудование должно проверяться на нагрев в послеаварийном режиме. Кроме того, при этих условиях необходимо проверить линию по потерям напряжения. Число трансформаторов, присоединяемых к одной линии, не должно быть более пятишести. Резервная перемычка должна находиться под напряжением и при разомкнутой схеме.

Принципиальная схема присоединения петлевой линии к двум РП изображена на рис.

5.10. Место размыкания линии может быть выбрано произвольно, но для получения минимальных потерь мощности желательно, чтобы оно было в точке токораздела. Каждая линия своими головными участками подключена к двум РП. Каждая часть линии от РП до токораздела питает определенное число

ТП. На схеме видно, что к части линии Л2 от РП1 до токораздела Р4 подключены ТП1 и ТП2, а к части линии Л2 от РП2 до токораздела Р4 подключена ТП3. Таким образом, обе части линии Л2 находятся постоянно под напряжением. При аварии на любом участке линии Л2, например в точке К, релейная защита, установленная на РП1, отключит выключатель

 

Рис. 5.10. Схема петлевой распределительной сети с резервированием на стороне НН

 

В2 и подстанции, присоединенные к линии от РП1 до токораздела Р4, т.е. ТП1 и ТП2 прекратят подачу электроэнергии потребителям. Для восстановления питания ТП1 и ТП2 дежурный персонал городской электрической сети отключает аварийный участок линии разъединителями Р2 и Р3  и затем включает разъединитель Р4, тем самым ТП2 переводится на питание от РП2. После ликвидации аварии на линии ТП2 вновь будет получать питание от РП1. Как видно из схемы, линии Л1 и Л2 резервируют трансформаторные подстанции со стороны линий напряжением 6... 10 кВ. Однако при повреждении трансформатора в какойлибо ТП (в этом случае независимо от резервирования ТП по линиям напряжением 6... 10 кВ) электроснабжение потребителей, подключенных к этой подстанции, прекратится. Учитывая это обстоятельство, в схеме предусматривается резервирование распределительных устройств низкого напряжения через электрическую сеть напряжением 0,4 кВ с помощью соединительных пунктов (СП) С1, С2, С3 и С4. В нормальном режиме все приходящие линии напряжением 0,4 кВ в СП рассоединены, и каждая подстанция изолированно друг от друга питает определенный район  потребителей.

В случае выхода из строя, например, трансформатора в ТП2 достаточно в С1и С2 замкнуть соединительные линии, и потребители, подключенные к ТП2, получат питание от ТП1 и ТП5. Такое резервирование возможно при условии, что мощность трансформаторов выбрана с учетом их перегрузочной способности в послеаварийных режимах.

Следует помнить, что петлевая сеть не обеспечивает бесперебойное питание потребителей: при повреждении любого участка петлевой сети часть потребителей отключается на время, необходимое для отключения поврежденного участка и перевода на питание от неповрежденных участков сети.

Для повышения надежности электроснабжения большое распространение получили сети с устройством АВР на секционном выключателе распределительного устройства.

 

5.6.  Схемы городских распределительных сетей напряжением до 1 кВ

 

Для питания потребителей третьей категории применяют радиальные не резервируемые или магистральные схемы с односторонним питанием. Магистральную схему можно применять для питания жилых домов и других потребителей при их относительно небольшой мощности.

На рис. 5.11 даны наиболее распространенные схемы распределительных сетей напряжением до 1 кВ. Из схем 5.11, а и 5.11, 5 видно, что распределительные сети, построенные по радиальной и магистральной схемам, обеспечивают питание потребителей только в нормальном режиме. При повреждении сети на любом участке или при коротком  замыкании

 

Рис. 5.11. Схемы распределительной сети жилых домов напряжением до 1 кВ

 

Рис. 5.12. Схема питания напряжением до 1 кВ жилого дома выше 16 этажей

 

электроснабжение всех потребителей, подключенных к сети, прекращается. Питание может быть восстановлено только после ремонта поврежденного элемента сети.

Наибольшее распространение в городских сетях получила петлевая схема, которую широко используют для электроснабжения потребителей второй категории. На рис. 5.11, в приведена петлевая схема с резервной перемычкой, включаемая в случае повреждения на одном из участков сети.

Питание электроприемников зданий высотой 9... 14 этажей осуществляется по радиальной петлевой схеме (рис. 5.11, г).

Петлевая магистральная схема с двумя взаимно резервируемыми кабельными линиями с переключателями на вводах потребителей показана на рис. 5.11, д.

При электроснабжении зданий высотой выше 16 этажей с электроприемниками первой категории, такими как лифты, пожарные насосы, дежурное освещение и т. п., применяют схему с автоматическим их резервированием (рис. 5.12). В нормальных условиях электроприемники первой категории питаются, например, по линии Л2 от трансформатора Т2. При выходе из строя линии Л2 или трансформатора Т2 электроприемники автоматически переключаются на питание от линии Л1 и трансформатора Т2, чем обеспечивается бесперебойное их питание.

Для электроснабжения многоэтажных и многосекционных жилых домов, а также для пи

 

 

Рис. 5.13. Схема питания напряжением до 1 кВ крупных магазинов, столовых, ресторанов

 

тания крупных отдельно стоящих ресторанов и магазинов применяют схему с тремя резервируемыми кабелями (рис. 5.13). Как видно из схемы, каждый кабель резервирует только одну из питающих линий.

 

5.7.  Схемы цеховых электрических сетей напряжением до 1 кВ

 

Основным условием рационального проектирования сети электроснабжения промышленного объекта является принцип одинаковой надежности питающей линии (со всеми аппаратами) и одного электроприемника технологического агрегата, получающего питание от этой линии. Поэтому нет смысла, например, питать один электродвигатель технологического агрегата по двум взаиморезервируемым линиям. Если технологический агрегат имеет несколько электроприемников, осуществляющих единый, связанный группой машин технологический процесс, и прекращение питания любого из этих электроприемников вызывает необходимость прекращения работы всего агрегата, то в таких случаях надежность электроснабжения вполне обеспечивается при магистральном питании (рис. 5.14). В отдельных случаях, когда требуется высокая степень надежности питания электроприемников в непрерывном технологическом процессе, применяется двустороннее питание магистральной линии (рис. 5.15).

Магистральные схемы питания находят широкое применение не только для питания многих электроприемников одного технологического агрегата, но также большого числа сравнительно мелких приемников, не связанных единым технологическим процессом. К таким потребителям относятся металлорежущие станки в цехах механической обработки металлов и другие потребители, распределенные относительно равномерно по площади цеха.

 

Рис. 5.14, Магистральная схема питания электроприемников  цеха

 

Рис. 5.15. Магистральная схема цеховой сети с двусторонним  питанием

 

Магистральные схемы позволяют отказаться от применения громоздкого и дорогого распределительного устройства или щита. В этом случае возможно применение схемы блока трансформатормагистраль, где в качестве питающей линии применяются токопроводы (шинопроводы), изготовляемые промышленностью. Магистральные схемы, выполненные шинопроводами, обеспечивают высокую надежность, гибкость и универсальность цеховых сетей, что позволяет технологам перемещать оборудование внутри цеха без существенных переделок электрических сетей.

 

Для питания большого числа электроприемников сравнительно небольшой мощности, относительно равномерно распределенных по площади цеха, применяются схемы с двумя видами магистральных линий: питающими и распределительными (рис. 5.16). Питающие, или главные, магистрали подключаются к шинам шкафов трансформаторной подстанции, специально сконструированным для магистральных схем. Распределительные магистрали, к которым непосредственно подключаются электроприемники, получают питание от главных питающих магистралей или непосредственно от шин комплектной трансформаторной подстанции (КТП), если главные магистрали не применяются (рис. 5.17).

К главным питающим магистралям подсоединяется возможно меньшее число индивидуальных электроприемников. Это повышает надежность всей системы питания.

Следует учитывать недостаток магистральных схем, заключающийся в том, что при повреждении магистрали одновременно отключаются все питающиеся от нее электроприемники. Этот недостаток ощутим при наличии в цехе отдельных крупных потребителей, не связанных единым непрерывным технологическим процессом.

 

Рис. 5.16. Схема питающих и распределительных линий в цехе

 

 

Рис. 5.17. Схема распределительных магистралей, подключенных непосредственно к шинам  комплектной

трансформаторной подстанции

 

Радиальные схемы питания характеризуются тем, что от источника питания, например  от КТП, отходят линии, питающие непосредственно мощные электроприемники или отдельные распределительные пункты, от которых самостоятельными линиями питаются более мелкие электроприемники (рис. 5.18).

 

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, так как аварии локализуются отключением автоматического выключателя поврежденной линии и не затрагивают другие линии.

Все потребители могут потерять питание только при повреждении на сборных шинах КТП, что мало вероятно вследствие достаточно надежной конструкции шкафов этих КТП.

Сосредоточение на КТП аппаратов управления и защиты отдельных присоединений позволяет легче решать задачи автоматизации в системе распределения электроэнергии на напряжении до 1 кВ, чем при рассредоточенном расположении аппаратов, что имеет место при магистральной системе.

 

 

 

Рис. 5.18. Схема радиального питания электроприемников  цеха

 

 

Рис. 5.19. Схема взаимного резервирования питающих магистралей цеха

 

Радиальные схемы питающих сетей с распределительными устройствами или щитами следует применять при наличии в цехе нескольких достаточно мощных потребителей, не связанных единым технологическим процессом или друг с другом настолько, что магистральное питание их нецелесообразно.

Отзывы клиентов

…Компания «Бриз Моторс» достойна доверия. Установленные ДГУ доказали свою надежность. Полный сервис: грамотный персонал, монтаж, наладка, послегарантийное обслуживание…

Генеральный директор ООО «ПСГ» Блок-Монолит»
Е.Б. Маханек

…На протяжении последних двух лет ваша компания исполняет обязательства по всем контрактам.  Поставка и обслуживание проходят на высоком техническом уровне…

Заместитель генерального директора по техническим вопросам ООО «Газпромнефть-Центр»
В.М. Дудкин

…Сотрудники компании проявили профессионализм, быстро и точно в срок решили все возникшие вопросы по поставке, обслуживанию и оформлению соответствующих документов…

Генеральный директор ООО «Монтаж-Строй»
Д.А. Пономарев

…Высокий профессионализм сотрудников компании как на стадии подбора, так и на стадии монтажа, технического обслуживания поставленного ДГУ Iveco Motors GE Cursor 400E…

Директор СПб ГСУ «Психоневрологический интернат №6»
Н.В. Задвинский

…В 2012 году для обеспечения гарантированного энергоснабжения производственного процесса «Бриз Моторс» поставил дизель-генератор FPT GS NEF100MA мощностью 80 кВт, в кратчайшие сроки проведены пуско-наладочные работы…

Зам. генерального директора по качеству ОАО «Щегловский вал»
В.Н. Фролов

… Индивидуальный подход квалифицированных менеджеров, наличие оборудования на складе в Санкт-Петербурге, гибкие условия резервирования…

Генеральный директор ЗАО «Петро Инжиниринг»
Д.Н. Демиденко

…Специалисты ООО «Бриз Моторс» выполнили полный комплекс работ по поставке, монтажу и пуско-наладке дизельной электростанции мощностью 320 кВт…

Директор ГБУ «Психоневрологический интернат №5» (Москва)
Н.В. Лопаткина

Дизельные электростанции со скидкой. Продажа

Вам нужна дешевая дизельная электростанция? Посмотрите наш каталог ДГУ по специальной цене.
Возможно, будет выгоднее купить дизельную электростанцию, чем брать ее в аренду.

Запросить коммерческое предложение

Нужна консультация отдела продаж или инженера для расчета проекта - звоните:


или пришлите запрос на


info@brizmotors.ru